Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The formation of the Isthmus of Panama closed the Central American Seaway, severing the only Late Cenozoic low‐latitude connection between the Pacific and Atlantic Oceans. Here we clarify the Early Pliocene (5.3–3.6 million years ago [Ma]) sequence of events associated with the shoaling of the Central American Seaway based on differences in upper ocean biogeochemical properties between the eastern tropical North Pacific (ETNP) and the Caribbean Sea. Foraminifera‐bound nitrogen isotopes (FB‐δ15N) are elevated in the ETNP relative to the Caribbean Sea throughout the Early Pliocene. Whereas ETNP FB‐δ15N shows no long‐term trend across the Early Pliocene, FB‐δ15N in the Caribbean Sea declines by ∼0.5‰ between 4.6 and 4.5 Ma, and by an additional ∼1‰ between 4.35 and 4.25 Ma. We interpret the divergence between ETNP and Caribbean Sea FB‐δ15N to indicate progressive isolation of their subsurface nutrient pools due to CAS shoaling. The oxygen isotopic composition of seawater (δ18Osw) derived from planktonic foraminiferδ18O and Mg/Ca shows a small but variable gradient between the ETNP and Caribbean Sea over the Early Pliocene, with a trend toward a largerδ18Oswgradient after 4.25 Ma. We suggest that the development of persistent chemical differences in both thermocline nutrients and surface waters between the ETNP and Caribbean Sea after 4.1 Ma reflects the cessation of basin‐scale oceanic exchanges across the Central American Seaway.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract. Paleoceanographic interpretations of Plio-Pleistocene climate variability over the past 5 million years rely on the evaluation of event timing of proxy changes in sparse records across multiple ocean basins. In turn, orbital-scale chronostratigraphic controls for these records are often built from stratigraphic alignment of benthic foraminiferal stable oxygen isotope (δ18O) records to a preferred dated target stack or composite. This chronostratigraphic age model approach yields age model uncertainties associated with alignment method, target selection, the assumption that the undated record and target experienced synchronous changes in benthic foraminiferal δ18O values, and the assumption that any possible stratigraphic discontinuities within the undated record have been appropriately identified. However, these age model uncertainties and their impact on paleoceanographic interpretations are seldom reported or discussed. Here, we investigate and discuss these uncertainties for conventional manual and automated tuning techniques based on benthic foraminiferal δ18O records and evaluate their impact on sedimentary age models over the past 3.5 Myr using three sedimentary benthic foraminiferal δ18O records as case studies. In one case study, we present a new benthic foraminiferal δ18O record for International Ocean Discovery Program (IODP) Site U1541 (54°13′ S, 125°25′ W), recently recovered from the South Pacific on IODP Expedition 383. The other two case studies examine published benthic foraminiferal δ18O records of Ocean Drilling Program (ODP) Site 1090 and the ODP Site 980/981 composite. Our analysis suggests average age uncertainties of 3 to 5 kyr associated with manually derived versus automated alignment, 1 to 3 kyr associated with automated probabilistic alignment itself, and 2 to 6 kyr associated with the choice of tuning target. Age uncertainties are higher near stratigraphic segment ends and where local benthic foraminiferal δ18O stratigraphy differs from the tuning target. We conclude with recommendations for community best practices for the development and characterization of age uncertainty of sediment core chronostratigraphies based on benthic foraminiferal δ18O records.more » « less
- 
            The oxygen isotopic composition of benthic foraminifera (d18Ob) is widely used to date and correlate marine sediment sequences. However, d18Ob has found comparatively little use in the Arctic Ocean due both to uncertainty in Arctic marine sediment chronology and the lack of resemblance between Arctic and open ocean d18Ob records. We address this issue by combining Arctic d18Ob records (Cronin et al., 2019) with benthic ostracode Mg/Ca-BWT reconstructions (Cronin et al., 2017) to create a composite record of the history of seawater d18O in the intermediate-to-deep Arctic Ocean over the last 600 kyr. Seawater d18O and its uncertainty was calculated using PSU Solver (Thirumalai et al., 2016).more » « less
- 
            Abstract. The oxygen isotopic composition of benthic foraminiferal tests (δ18Ob) is one of the pre-eminent tools for correlating marine sediments and interpreting past terrestrial ice volume and deep-ocean temperatures. Despite the prevalence of δ18Ob applications to marine sediment cores over the Quaternary, its use is limited in the Arctic Ocean because of low benthic foraminiferal abundances, challenges with constructing independent sediment core age models, and an apparent muted amplitude of Arctic δ18Ob variability compared to open-ocean records. Here we evaluate the controls on Arctic δ18Ob by using ostracode Mg/Ca paleothermometry to generate a composite record of the δ18O of seawater (δ18Osw) from 12 sediment cores in the intermediate to deep Arctic Ocean (700–2700 m) that covers the last 600 kyr based on biostratigraphy and orbitally tuned age models. Results show that Arctic δ18Ob was generally higher than open-ocean δ18Ob during interglacials but was generally equivalent to global reference records during glacial periods. The reduced glacial–interglacial Arctic δ18Ob range resulted in part from the opposing effect of temperature, with intermediate to deep Arctic warming during glacials counteracting the whole-ocean δ18Osw increase from expanded terrestrial ice sheets. After removing the temperature effect from δ18Ob, we find that the intermediate to deep Arctic experienced large (≥1 ‰) variations in local δ18Osw, with generally higher local δ18Osw during interglacials and lower δ18Osw during glacials. Both the magnitude and timing of low local δ18Osw intervals are inconsistent with the recent proposal of freshwater intervals in the Arctic Ocean during past glaciations. Instead, we suggest that lower local δ18Osw in the intermediate to deep Arctic Ocean during glaciations reflected weaker upper-ocean stratification and more efficient transport of low-δ18Osw Arctic surface waters to depth by mixing and/or brine rejection.more » « less
- 
            The cyclic growth and decay of continental ice sheets can be reconstructed from the history of global sea level. Sea level is relatively well constrained for the Last Glacial Maximum (LGM, 26,500 to 19,000 y ago, 26.5 to 19 ka) and the ensuing deglaciation. However, sea-level estimates for the period of ice-sheet growth before the LGM vary by > 60 m, an uncertainty comparable to the sea-level equivalent of the contemporary Antarctic Ice Sheet. Here, we constrain sea level prior to the LGM by reconstructing the flooding history of the shallow Bering Strait since 46 ka. Using a geochemical proxy of Pacific nutrient input to the Arctic Ocean, we find that the Bering Strait was flooded from the beginning of our records at 46 ka until 35.7 - 2.4 + 3.3 ka. To match this flooding history, our sea-level model requires an ice history in which over 50% of the LGM’s global peak ice volume grew after 46 ka. This finding implies that global ice volume and climate were not linearly coupled during the last ice age, with implications for the controls on each. Moreover, our results shorten the time window between the opening of the Bering Land Bridge and the arrival of humans in the Americas.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
